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1. INTRODUCTION

It is of general interest to develop an analytical model to describe the behavior of two
nonhomogeneous bodies during impact at high obliquity and at impact velocities of several
kilometers per second. One approach involves sectionally homogenizing the bodies and
employing a Tate-like penetration analysis [1] on the resulting problem. Asa first step in solving
this general problem, the straightforward case of a uniform rod penetrating a multi-element target
at normal incidence is considered. Effort was directed at constructing the appropriate
homogenization relations for such a target configuration, in the context of a Tate penetration
analysis. In such analyses, only penetrator and target densities, penetrator strength, and target
resistance are employed as material parameters. To avoid the need to transform the shape or
velocities of the bodies in question, only techniques which strictly preserve length and time
dimensions are considered.

In addition to a straightforward volume averaging technique for both density and target
resistance, a density homogenization is examined which preserves penetrator erosion in the
hydrodynamic limit and two different target resistance homogenizations are considered. In one,
the homogenization attempts to preserve the decelerative impulse delivered to the penetrator and
should thus provide a good predictor for residual penetrator velocity. In the other, the
homogenization attempts to preserve eroded penetrator length, even for cases below the
hydrodynamic limit. This latter technique should thus provide a reasonable predictor for residual
rod length. One very interesting result that arises from these two target resistance
homogenizations is that they depend upon the penetrator density, in both cases, and upon the
penetrator strength, in the latter case. This result is similar to the conclusion of Wright and
Frank [2] that “‘R is not simply a measure of target hardness, but that it involves characteristics
of the rod and of the specific collision under consideration.”” However, their conclusion pertains
to the balance laws within a homogeneous target, whereas the current conclusion arises from the
nature of multiplate-target homogenization. Though such a dependence of target resistance on
penetrator parameters may seem intellectually unsatisfying, it may actually be necessary in order
to achieve a proper homogenization of material properties.

2. THEORY

In the following discussion, the normal impact of a uniform penetrator of specified
density, pg, length, L, strength, ¥, and velocity, V,, upon a multi-element target of thickness, 7,
shall be considered. The target is considered to be composed of n layers, each of density p;,
thickness z, and target resistance, R, An air gap may comprise one or more of these target
layers. The goal of this exercise is to formulate an equivalent target of identical total thickness,
7, whose effect upon the eroding penetrator closely resembles that of the original multi-element
target. Since a fundamental understanding of target homogenization is desired, comparisons of
the multi-element-target solution to various homogenized solutions will be accomplished with the
original Tate penetration model [1]. Higher order effects of obliquity, confinement, L/D, etc. will
not be considered here, since they could otherwise obscure conclusions and trends of the




homogenization modeling itself. Additionally, it is not the intent of this paper to debate the
merits of utilizing a Tate solution for various applications. Rather, the intent is to obtain the best
homogenization technique, given that the Tate approach will be employed.

Below the ballistic limit, penetrator response can be a strong function of the target
element stacking order. Homogenization algorithms will, by their nature, fail to capture these
variations resulting from the stacking arrangement. Thus, to avoid confusing variations due to
the target-element stacking arrangement with intrinsic differences in the homogenization
algorithms themselves, discussion will be limited to only those cases above the ballistic limit
(where target perforation occurs). Even above the ballistic limit, penetrator response will be
mildly affected by target element stacking order. However, this influence rapidly diminishes with
increasing striking velocity and quickly becomes negligible.

2.1 Volume-Averaged Parameters. Volume averaging (a.k.a. the rule of mixtures) may
seem a good, logical, first step at approaching the homogenization problem. Continuity of target
mass is automatically satisfied if density is volume averaged, which seems appealing. For a one-
dimensional approach, volume averaging is equivalent to length averaging. Thus, the
homogenization of a parameter, for example p, associated with each target element i, would be
volume averaged by weighting each element’s p; by the element thickness, to give

>opt
i=1

p = ey

n

X

i=1

The barred quantity will be uniformly used in this paper to denote a volume-averaged
homogenization. For the current discussion, the homogenization of the type given in (1) may
also be identically performed on target resistance, merely by substituting R for p. As will be
shown in subsequent analysis, the volume-averaged homogenization technique is not a
particularly accurate method to describe residual penetrator lengths and velocities, especially at
higher impact velocities.

2.2 Hydrodynamic Erosion Homogenization for Density, p,. An homogenization method
for density is offered here which has the virtue of predicting the proper residual penetrator length

in the hydrodynamic limit. As striking velocity increases, the influence of both penetrator
strength and target resistance is monotonically lessened, and erosion is governed solely by density
considerations.

Consider the case of hydrodynamic penetration in order to develop this formulation. In

the hydrodynamic limit, a Bernoulli balance indicates that an increment of penetrator erosion
equals p times the increment of target penetration, the constant, p, being given by the square root

2




of the target to penetrator density ratio, p=y/p/p, . If we use this hydrodynamic limiting case
to homogenize the penetrator/target erosion process, we may equate the total length of eroded
penetrator through the homogenized target to the incremental sum of eroded lengths through each
of the individual target elements (i.e., AL = ZAL)). Substituting terms gives:

Pel=D B o @
i=1

where the *H’ subscript represents this ‘‘hydrodynamic’’ homogenization which preserves length
erosion in the hydrodynamic limit. Expressing homogenized target thickness, t, as the sum of
the original target element thicknesses, the solution for i, becomes

n
PN
- i=1

X

i=1

By 3

Reducing p back to its density primitives permits (3) to be expressed in terms of the
hydrodynamic homogenized density:

i=1

4

Jou

This definition of density is the relevant metric for hydrodynamic erosion, though it clearly
differs from the volume-averaged density of (1), and not by a trivial amount. For example,
considering a baseline target composed of equal thicknesses of steel (p =7.8 g/cm®) and air (p=~0),
the two homogenized densities are given as p=3.9 and p,=1.95. In the hydrodynamic limit
(assuming enough penetrator length to permit perforation), the volume-averaged target density
would predict penetrator erosion 41% larger than the actual length consumption.

For lower impact velocities, penetration behavior is no longer hydrodynamic, and strength
considerations will play an increasingly important role. Though it would be possible to construct
a model in which both homogenized density and target resistance were both functions of impact
velocity, such complications can hopefully be avoided.  As such, target resistance
homogenizations to be considered below will be cast in a context where the homogenized density
is a function of geometry only and thus not a function of impact velocity.




2.3 ‘Impulse’ Homogenization for Target Resistance, R,. To develop one estimate of
what an homogenized resistance might be, consider the function of the resistance terms, R and
Y, in the modified Bernoulli equation:

%pR(V—U)Z +Y= %pUz ‘R . )

These terms modify the stress (thus, force) in the momentum-based Bernoulli equation, thereby
modifying the impulse imparted to the projectile and target. If one speculates that the impulse,
IF dt, delivered to the penetrator by the target resistance should remain unaffected by the
homogenization process, then it will be necessary to obtain the time spent penetrating each
element of the target laminate. A first order approximation is likewise available from
hydrodynamic considerations. However, the penetration time estimated in this manner will be
in slight error when the penetration conditions are short of hydrodynamic. Proceeding
nonetheless, the hydrodynamic penetration rate, given as

v-_"Y_, , ©)
1+p

may be employed to approximate the time, T,, spent penetrating each element. This time is given
as

T, = /U, = t(1+p)/V, . ©

Using this per element penetration time in the impulse equation, the impulse-homogenized target
resistance, R, is given by

ERi(1+pi)ti
R, == . 8)

v n

Y s

i=1

Since y; is a function of the penetrator density, the relationship (8) has the complication of
requiring the penetrator density to compute the target resistance R,. Because this homogenization
strove to preserve impulse delivered by the target, one might hope that such a formulation would
provide a reasonably good predictor for residual penetrator velocity exiting a target.

2.4 ‘Erosion’ Homogenization for Target Resistance. R;,. One may derive a target
resistance homogenization that strives to conserve eroded penetrator length, rather than impulse
delivered to the penetrator. Consider the penetrator-erosion and the modified-Bernoulli equations,
as the penetrator is traversing target element i:




L=U-V,, ©)

Lo w-vy+y=Lov?-R . (10)
2 2 !
Solve for L, to eliminate V/:
) 2(R.- .
I L (11)
Px P -

If target element i is of thickness 7, and the time required to penetrate this element is T;, then the
amount of penetrator erosion occuring in element i is

AL, = L7, , (12)

where the time spent penetrating element i may be approximated, as before, through the use of
(7). In this homogenization approach, the sum of the eroded penetrator lengths through each
target element should equal the total eroded length through the homogenized target, or
AL = AL, Substitution gives

L n n

eff -
3

o i=1 i=1

(13)

Sl

where the sum of the individual target element thicknesses has been substituted for the total
homogenized target thickness. Note that, from (11) above,

L,-= —J M + peﬁujﬁ . (14)
Pr Pr

The term “‘p,;’" represents the homogenized density being used in conjunction with this target

resistance homogenization. . We will choose the hydrodynamic density homogenization, py, to

be that effective density for the remainder of this discussion, or p,; = py. It immediately follows

that the effective penetration rate, U, is also based on the hydrodynamic density homogenization

(and will thus be called Up). It is given as

v V,
“«2 = °__ . (15)

UH
1+]»1H 1+ ,pH/pR

We seek an homogenized approximation to the term ‘‘R;.’”” Substitute (11), (14), and (15) into




(13) and solve for R;:

2
UH it (R,--Y) + P; _ pHUPZI

2 _
)L ‘

i=1

(16)

This homogenized resistance is nominally a function of not only target geometry, but also of
penetrator density, strength, and impact velocity. Though R, may, at first, seem to be a strong
function of Uy, and thus striking velocity, V,, this conclusion turns out not to be the case, and
in fact R, quickly asymptotes to a constant value with increasing striking velocity, due to a
canceling of terms.

To obtain this asymptote, use (4) to replace the homogenized hydrodynamic density with
its raw constituents, and express (16) as follows:

R =Y+ _" Ja+Kb | - z\/E /zn:ti , 17

where
_ ®R-NUgt
ai = U2
2
.t
o
K=U

Both Uy and U, are directly proportional to striking velocity V,. Their ratio is therefore
independent of striking velocity. Thus, terms g; and b, are composed purely of geometrical and
material property considerations independent of striking velocity. The goal then becomes to show
that (17) is independent of K as K, the only velocity dependent term, becomes sufficiently large.

Consider, thus, the evaluation of the limit

lim | |Yy/a,+Kb, | - [T Kb, | | . (18)

Factor out a K to obtain




n

2
lim k| |3 ;{i-»b,. Sy AR (19)
i=1

Ko i=1

For large K (i.e., large impact velocity), the first term may be approximated in a first order
binomial expansion as

a. a.
—+b, = b + L+ 20
b = b @)

2Kb,

Using this two-term expansion, the limit becomes

lim K
P 2;\/_ 2K\/_

This limit is a difference of squares and can thus be expressed as

tim K| |3, ZK(J_E\/— \F

For large K, the first term becomes

i=1

(i JZ] - @

AN (22)

and the second becomes

al
=1 2K b,

The limit thus becomes independent of K, and is given by




a

2 2
tim | |3 a-Kp, | - |3 /Kb, A A 23)
Koo i=1 i=1 i=1 i=1 \/E:

With the use of this limit and appropriate substitution, velocities may be removed from equation
(17) to obtain finally the asymptotic value of R;, which we will call R, :

2": R -V A+\p,/py V1,
R_=Y \/E N ‘/—; . (24)

-+
Lx n
(A +ypy/og ) Y
i=1

To justify the use of this homogenization asymptote (24), examine how the results of R,
given by (16), and R;, compare for a representative impact condition involving the multi-element
target described in Table 1. The comparison of R, and R,, for this case is depicted in Figure 1.
At all velocities, the functions are within 10% of each other, and at velocities of ballistic interest
(for example, greater than 1600 m/s), the functions are within 3% of each other. Though the
merits of the R, homogenization will be explored subsequently, the use of the asymptotic
expression to approximate the formulation seems justifiable. Though using the asymptote
expressed in (24) makes homogenized target resistance independent of penetrator striking
velocity, the expression is still quite dependent upon penetrator density and strength. For all
cases of (24) studied to date, strengthening a penetrator (increasing Y) has the net effect of
creating an apparently stronger homogenized target (increasing R,).

With regard to the inclusion of air gaps in targets, a few words are appropriate here. The
modified Bernoulli equation, (10), and thus the penetrator erosion rate equation, (11), are valid
for the case when both penetrator and target are eroding. If a particular target element is so weak
(e.g., air or other low density/strength materials) that rod erosion would not actually occur, the
use of the penetrator material strength value, Y, is not justified in (10) and (11). Rather, for rigid
penetration, the appropriate value of Y, which now represents a stress and not a strength,
dynamically adjusts itself so as to make V=U, in (10), which makes the square root term, and
thus dL/dt, identically zero in (11).

The effect of these target elements, producing no rod erosion, upon equation (16) is that
- only the real part of the square root term should be employed. Namely, summation terms with
a negative radicand should be considered as identically zero. The effect of this term zeroing on
the calculation of the asymptote, given by (24), is to zero out the numerator summation term of
target elements for which dL/dt is zero (i.e., of elements for which a negative radicand arises in

(11)).




Table 1. Representative Penetrator/Target Geometry Used to Compare Actual and Asymptotic Length-
Based, Homogenized Target Resistances, R, and R,,, Respectively

pr (kg/m®) Y (GPa) Ly (m)
8900 0.5 1.0
—
p; (kg/ m’) R; (GPa) t; (m) B
7800 1.0 0.3
0 0 0.5
2800 2.0 0.3
4800 3.0 0.3
200 —— I
1.50 r /R,J =138 -
= ' R,
[aW
S 1.00 - ]
R
(a4
0.50 + i
000 — .
0.0 2.0 4.0 6.0 8.0

V, (km/s)

Figure 1. A comparison of the eroded-length homogenization for
target resistance, equation (16), with its asymptote, equation (24), for
the representative impact conditions described in Table 1.




For targets composed solely of strong elements where R, > Y (where dL/dt is always non-
zero) and/or gap (void) target elements (where dL/dt is always identically zero), the behavior of
effective target resistance, given by (16), is monotonic. This effective target resistance
approaches the asymptotic value, given by (24), when one accounts for the appropriate term
zeroing, as described above.

The picture complicates somewhat, for low-density, weak target elements where rod
passage transitions from rigid-body to eroding, as a function of impact velocity. In these cases,
the modifications described above to evaluate equation (16) are still appropriate. However, the
behavior of (16) is no longer monotonic (nor asymptotic) with impact velocity. However, the
complications arising from these weak target elements will not be addressed in this introductory
paper. Suffice it to say that the use of equation (24) needs to be used with some caution in these
cases.

3. RESULTS

In actual applications of the penetration equations, the target resistance usually exceeds
the penetrator strength. An explanation of this tendency is offered by Wright and Frank [2], who
show that the target resistance, R, is justifiably composed of a variety of terms, the net effect of
which is to make the value of R several times the actual target yield strength. Thus, the word
“‘resistance’’ and not ‘‘strength’’ is used to describe this term.

Nonetheless, to better assess the value of the various homogenization techniques discussed
herein, cases will be examined in which the rod strength exceeds the target resistance, as well
as the (more usual) converse. Additionally, for both of these situations, a case will be studied
for a high-density penetrator relative to the target elements, as well as the case of a low-density
penetrator relative to the target elements.

These four permutations are given as follows: Case I: high-density, weak penetrator; Case
II: high-density, strong penetrator; Case III: low-density, weak penetrator; and Case IV: low-
density, strong penetrator. The penetrator/target geometries illustratively chosen for these four
cases are listed in Tables 2 through 5, along with the various homogenized representations. For
the low-density penetrators, the target dimensions have been scaled back to permit penetrator
perforation. Because the volume fraction of each target element is the same in all four cases,
volume-averaged properties (density and target resistance) in all cases remain unchanged. The
‘‘hydrodynamic’’ homogenized density, though numerically different from the volume-averaged
density, is also constant for all cases. Since homogenized strength R, is a function of penetrator
density, its value for Cases I and II will take on one value, and for Cases III and IV, a different
value. The homogenized strength R;,, on the other hand, is a function of both penetrator density
and strength. Thus, its value changes for each of the four cases. Furthermore, its value increases
significantly over the other resistance homogenization formulations when the penetrator strength
is large compared to target element resistances (e.g., Cases II and IV).
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Table 2. Penetrator/Target Geometry (Case I: High-Density, Weak Penetrator) Used to Compare

Homogenization Techniques

pr (kg/m®) Y (GPa) L, (m)
8900 0.5 1.0

p; (kg/m’) R; (GPa) t; (m)
7800 1.0 0.3
0 0 0.5
2800 2.0 0.3
4800 3.0 0.3

p = 3300 R =129 t=14

Dy = 2035 Ry =149 t=14

Py = 2035 R, =138 t=14

Table 3. Penetrator/Target Geometry (Case II: High-Density, Strong Penetrator) Used to Compare

Homogenization Techniques

pr (kg/m’) Y (GPa) L, (m)
8900 5.0 1.0

p; (kg/m’) R, (GPa) t; (m)
7800 1.0 0.3
0 0 0.5
2800 2.0 0.3
4800 3.0 0.3

p = 3300 R =129 t=14

py = 2035 R, = 1.49 t=1.4

Py = 2035 R, =325 t=1.4

11




Table 4. Penetrator/Target Geometry (Case III: Low-Density, Weak Penetrator) Used to Compare
Homogenization Techniques. Target Element Thicknesses Scaled Down to Permit Perforation

px (kg/m’) Y (GPa) L, (m)
2700 0.5 1.0
p; (kg/m’) R, (GPa) t, (m)
7800 1.0 0.2
0 0 0.333
2800 2.0 0.2
4800 3.0 0.2
p = 3300 R =129 t=0933
py = 2035 R, = 1.58 t = 0.933
py = 2035 R, =148 t = 0.933

Table 5. Penetrator/Target Geometry (Case IV: Low-Density, Strong Penetrator) Used to Compare
Homogenization Techniques. Target Element Thicknesses Scaled Down to Permit Perforation

pr (kg/m’) Y (GPa) Ly (m)
2700 5.0 1.0
p; (kg/m’) R, (GPa) t; (m)
7800 1.0 0.2
0 0 0.333
2800 2.0 0.2
4800 3.0 0.2
p = 3300 R =129 t= 0933
Py = 2035 R, = 1.58 t = 0.933
py = 2035 R, =301 t = 0.933

12




Figures 2 through 5 depict the residual penetrator length exiting the targets as a function
of impact velocity for each of the cases described previously. In each figure, the benchmark
curve is shown for the actual multi-element penetration solution, as well as curves for the
volume-averaged, impulse, and erosion homogenizations. In all of these figures, residual length
data is shown only at velocities above the limit (perforation) velocity for each of the targets.
Figures 6 through 9 show similar comparisons for the same four impact geometry cases, except
that residual velocity, not length, is depicted. Solutions presented in the figures were achieved
by the technique described by Walters and Segletes [3].

Though the four cases examined here by no means compose an exhaustive cross section
of possible penetrator/target conditions, they do explore some key variations in the parameter
space of the relevant variables. In a paper of this nature, brevity requires a limit on the number
of cases presented. Though these cases represent the results obtained to date, it is clearly
possible that some of the conclusions drawn may have to be modified as the solution parameter
space is further explored. The following observations may be drawn upon examination of the
four cases studied:

(1) Volume averaging as an homogenization technique is likely to be a poor predictor of
penetration, especially when results are taken over a wide impact velocity range (up to
and including hypervelocity).

(2) As impact velocity increases, the density homogenization becomes the primary
determinant of penetrator erosion.

(3) For homogenization schemes which preserve measures of length, the hydrodynamic
density homogenization, py, is the only homogenization which assures a correct
accounting of penetrator erosion in the hydrodynamic limit.

(4) For the material properties and target geometry covered in the cases studied, volume-
averaged density always overestimated the amount of penetrator erosion in the high-
velocity limit. The magnitude of the error in eroded length, at the hypervelocity limit,

can be obtained by the formula {/p/p, -1, which for the cases studied gives an error
of 27%.

(5) For penetrators low in strength compared to target resistances (¥ << R;, as in Cases
I and II0), both of the alternate strength homogenizations proposed in this paper, R, and
R, ., produce very similar results which compare favorably to the actual multiplate Tate
solution in both residual penetrator length and residual velocity. The impulse
homogenization, Ry, might be slightly superior under these conditions. Because target
resistance, R, is generally several times the value of target material yield strength, the
low-strength penetrator conditions described by Cases I and III are the norm.
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Figure 2. Residual penetrator length vs. impact velocity for Case I
impact conditions of high-density, weak penetrator (Table 2). Plot
depicts multiplate-target solution plus three homogenization
alternatives.
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Figure 3. Residual penetrator length vs. impact velocity for Case Il
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depicts multiplate-target solution plus three homogenization
alternatives.
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Figure 4. Residual penetrator length vs. impact velocity for low-
density, weak penetrator (Table 4). Plot depicts multiplate-target
solution plus two homogenization alternatives (volume-averaged
target fails to perforate).
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Figure 5. Residual penetrator length vs. impact velocity for Case IV
impact conditions of low-density, strong penetrator (Table 5). Plot
depicts multiplate-target solution plus three homogenization
alternatives.
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Figure 6. Residual penetrator velocity vs. impact velocity for Case I
impact conditions of high-density, weak penetrator (Table 2). Plot
depicts multiplate-target solution plus three homogenization
alternatives.
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Figure 7. Residual penetrator velocity vs. impact velocity for Case 11
impact conditions of high-density, strong penetrator (Table 3). Plot
depicts multiplate-target solution plus three homogenization
alternatives.
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density, weak penetrator (Table 4). Plot depicts multiplate-target
solution plus two homogenization alternatives (volume-averaged
target fails to perforate).
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depicts multiplate-target solution plus three homogenization

alternatives.
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(6) For penetrators comparable or higher in strength compared to target resistances (¥
R;, as in Cases II and IV), the erosion homogenization, R,,, is by far the best predictor
of residual penetrator length of the schemes studied. Furthermore, it is the only
homogenization scheme studied which is able to produce an homogenized target
resistance larger than any of the constituent resistances in the target array. Note that R,
partially depends upon penetrator strength, Y, and that a high penetrator strength will
boost the value of R,,. The need for this exaggerated homogenized target resistance, for
conditions involving high penetrator strengths, leads to the important conclusion that a
target composed of multiple discrete elements will respond in kind to the strengthening
of the penetrator. Even though the individual target elements remain unstrengthened, the
aggregate target behaves as if it were stronger!

(7) For penetrators comparable or higher in strength compared to target resistances (¥ >
R;, as in Cases IT and IV), the impulse homogenization, R, is the best predictor of
residual velocity of the schemes studied.

4. CONCLUSIONS

This paper describes and examines several homogenization approaches to a multi-element
target penetration problem, in the context of the Tate penetration model. To keep this initial
analysis into homogenization techniques straightforward, only cases consisting of a uniform rod
penetrating into a multi-element target at normal incidence were considered. In the various
schemes examined, length and time dimensions are preserved, so that physical dimensions and
velocities are not affected by the homogenization procedure. Such length and time preserving
schemes might be useful when it is desired to sectionally homogenize a complex body, such that
the overall body dimensions remain unchanged, while at the same time, the internal detail of the
body is replaced by a simpler, homogenized representation.

In the penetration analysis considered here, the material parameters of target density and
target resistance are subject to homogenization. In addition to straight volume-averaging
homogenization for both density and resistance, a ‘‘hydrodynamic’’ density homogenization is
considered which explicitly preserves penetrator length erosion in the hypervelocity limit. Also,
two target resistance homogenizations, so-called ‘‘impulse’’ and ‘erosion’’ homogenizations, are
explored. These two schemes homogenize target resistance in a fashion which attempts to
preserve, in the former case, impulse delivered to the decelerating penetrator, and in the latter,
eroded length at velocities below the hydrodynamic limit.

It is clear from the physics of the Bernoulli equation (which the Tate equations approach
in the high-velocity limit) that a volume-averaged density homogenization will yield incorrect
predictions of penetration at hypervelocity impact speeds. The magnitude of the error will
depend upon the specific target geometry and material properties in question, but will be over
40% for the simple case of a target composed of equal volumes of any material and void. For
the more general cases studied in this report, the error was 27%. In general, any targets which
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have a significant percentage of air (void) will tend to accentuate the error produced by the
volume-averaged density homogenization.

At lower impact velocities, the homogenization of target resistance becomes increasingly
important, though its effect is still coupled with that of the density homogenization. If one
accepts the notion of using a density homogenization independent of impact velocities, then in
order to capture target behavior over the wide range of material property space, the target
resistance homogenization must become a function of the penetrator properties. The *‘erosion’
homogenization for target resistance described in this report demonstrates this penetrator
dependence clearly, not only by the explicit occurrence of penetrator strength, Y, in equation (24),
but also by the fact that the homogenized resistance can exceed the constituent resistances of
each of the target elements, if Y is correspondingly large.

For situations where the penetrator strength is small relative to target resistance, both the
“‘impulse’’ and ‘‘erosion’’ homogenizations for strength produce similar results, matching the
actual multi-element target solution well. When the penetrator strength is relatively large, the
“‘impulse’’ homogenization does the best job of predicting residual penetrator velocity exiting
a finite target, while ‘‘erosion’’ homogenization does the best job of predicting residual penetrator
length under the same conditions. Since actual penetration capability (at the velocities of
interest) is more strongly dependent upon penetrator length than velocity, the ‘‘erosion’
resistance would be expected to provide the best penetration prediction capability of the schemes

studied.

There are many opportunities for future work in this area. The most obvious area would
be to consider homogenization schemes for heterogeneous penetrators, as opposed to targets.
Since the target homogenization schemes examined here, in some cases, depend upon penetrator
properties, the problem of simultaneously homogenizing heterogeneous penetrator and target
poses additional challenges. Generalizing the homogenization schemes to handle arbitrary 3-D
geometries, rather than a 1-D approximation (rod impacting multiple flat-plate target
configuration) is also a worthwhile endeavor. As a first step in this direction, one might replace
the target-element thicknesses in the current methodology equations with the package thickness
multipled by the target-element volume fraction. Finally, and perhaps of greater importance than
the current effort, is the issue of how to homogenize lateral crater size and/or lateral damage

extent.
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PASADENA CA 91125

CALTECH

ATTN ANDREW P INGERSOLL
MS 170 25

1201 E CALIFORNIA BVLD
PASADENA CA 91125

CALTECH

ATTN GLENN ORTON
MS 169 237

4800 OAK GROVE DR
PASADENA CA 91007




NO. OF

COPIES ORGANIZATION

1

MIT DEPT OF EARTH ATMOS
& PLANETARY SCIENCES
ATTN HEIDI B HAMMELL

54 316

CAMBRIDGE MA 02139

CALIFORNIA ST UNIV
NORTHRIDGE

ATTN JON H SHIVELY
10343 4TH ST NW
ALBUQUERQUE NM 87114

STANFORD UNIVERSITY
ATTN BRIAN PETERSEN
704 CAMPUS DR

RAINS 16L

STANFORD CA 94305

UNIV OF ARIZONA
ATTN DAVID H LEVY
TUCSON AZ 85721

UNIV OF ARIZONA

LUNAR & PLANETARY DEPT
ATTN MICHAEL C NOLAN
TUCSON AZ 85721

UNIV OF CA BERKLEY
MECHNL ENGRNING DEPT
GRADUATE OFFICE

ATTN KEZHUN LI
BERKELEY CA 94720

UNIV OF DAYTON

MCHNCL & AEROSPC ENGRNG
ATTN MATTHEW LAFONTAINE
300 COLLEGE PARK

DAYTON OH 45469

UNIV OF DAYTON

RESEARACH INSTITUTE

ATTN ANDREW J PIEKUTOWSKI
KEVIN L POORMON

300 COLLEGE PARK

DAYTON OH 45469-0182

NC STATE UNIVERSITY
ATTN YASUYUKI HORIE
RALEIGH NC 27695-7908

33

NO. OF

COPIES ORGANIZATION

1

LOUISIANA STATE UNIV
ATTN ROBERT W COURTER
948 WYLIE DR

BATON ROUGE LA 70808

UNIV OF MINNESOTA
AHPCRC

ATIN G SELL

D AUSTIN

1100 WASHINGTON AVE S
MINNEAPOLIS MN 55415

NEW MEXICO STATE UNIV
ASTRONOMY DEPT

ATTN RITA BEEBE

MARK MARLEY

LAS CRUCES NM 88003

UNIVERSITY OF COLORADO
ATIN T MACLAY

CAMPUS BOX 431 NNT 341
BOULDER CO 80309

UNIV OF ALABAMA
AEROPHYSICS RSCH CTR
ATTN RICHARD A HAYAMI
PO BOX 070007
HUNTSVILLE AL 35807-7007

UNIV OF ALA HUNTSVILLE
AEROPHYSICS RSCH CTR
ATTN GARY HOUGH

PO BOX 999

HUNTSVILLE AL 35899

UNIV OF ALA HUNTSVILLE
CIVIL ENGRNG DEPT

ATIN WILLIAM P SCHONBERG
HUNTSVILLE AL 35899

UNIV OF ALABAMA

ATTIN DAVID J LIQUORNIK
PO BOX 999

HUNTSVILLE AL 35899

UNIV OF ALABAMA

ATTN A EUGENE CARDEN
86 EASTERN HILLS
COTTONDALE AL 35453




NO. OF

COPIES ORGANIZATION

2

BROWN UNIVERSITY
DEPT OF GEOLOGICAL SCI
ATTN PETER H SCHULTZ
SELI SUGITA

BOX 1846

PROVIDENCE RI 02912

NEW MEXICO INSTITUTE
MINING & TECHNOLOGY
ATTN DAVID J CHAVEZ
CAMPUS STATION TERA GRP
SOCORRO NM 87801

NEW MEXICO TECH
EMRTC

ATTN FRED SANDSTROM
CAMPUS STATION
SOCORRO NM 87801

PLANETARY SCIENCE INST
ATTN CLARK CHAPMAN
620 N 6TH AVE

TUCSON AZ 85705

SOUTHWEST RESEARCH INST
ATTN C ANDERSON

J WALKER

B COUR PALAIS

D LITTLEFIELD

S A MULLIN

PO DRAWER 28510

SAN ANTONIO TX 78284

UNIVERSITY OF TEXAS
DEPT OF MCHNCL ENGRNG
ATTN ERIC P FAHRENTHOLD
AUSTIN TX 78712

TEXAS A&M UNIVERSITY
PHYSICS DEPARTMENT
ATTN DAN BRUTON
COLLEGE STATION TX
77843-4242

UNIV OF DELAWARE

DEPT OF MECHNL ENGRNG
ATTN PROJ J VINSON
PROF D WILKINS

PROF J GILLESPIE

DEAN R B PIPES

NEWARK DE 19716

34

NO. OF

COPIES ORGANIZATION

1

AEROIJET ELECTRO SYS CO
ATTIN WARHEAD SYSTEMS
J CARLEONE

PO BOX 296

AZUSA CA 91702

AEROJET ORDNANCE
ATIN P WOLF

G PADGETT

1100 BULLOCH BLVD
SOCORRO NM 87801

ALLIANT TECHSYSTEMS INC
ATIN G R JOHNSON

MN11 2925

T HOLMQUIST MN11 2720

R STRYK

600 SECOND ST NE

HOPKINS MN 55343

ALME AND ASSOCIATES
ATTN MARVIN L ALME
6219 BRIGHT PLUME
COLUMBIA MD 21044-3790

APPLIED RSRCH ASSOC INC
ATIN JEROME D YATTEAU
5941 S MIDDLEFIELD RD
SUITE 100

LITTLETON CO 80123
ALBUQUERQUE NM 87110

APPLIED RSRCH ASSOC INC
ATTIN FRANK MAESTAS
4300 SAN MATEO BLVD SE
ALBUQUERQUE NM 87110

APPLIED RESEARCH LAB
ATTN JEFFREY A COOK
10000 BURNETT RD
AUSTIN TX 78758

ARES CORPORATION
ATTIN J L HARRIS IO
1800 N KENT ST STE 1230
ARLINGTON VA 22209

ARES CORPORATION

ATIN CHARLES W MARTIN
1800 N KENT STE 1230
ARLINGTON VA 22207




NO. OF

COPIES ORGANIZATION

1

ASI SYSTEMS INC
ATTN LARRY COHEN
838 N EGLIN PKWY
SUITE 421

FT WALTON BEACH FL
32547-3908

BABCOCK & WILCOX INC
ATTN JOHN R FRISCHKORN
JOHN C SINCLAIR IIT

BOX 1469 MS 0206

IDAHO FALL ID 83403

BATTELLE

ATTN ROGER M DUGAS
7501 S MEMORIAL PKWY
SUTIE 101

HUNTSVILLE AL 35802-2258

BATTELLE

ATTN R JAMESON

S GOLASKI
TECHNICAL LIBRARY
505 KING AVE
COLUMBUS OH 43201

BOEING AEROSPACE CO
SHOCK PHYSICS & APLD MATH
ENGRNG TCHNLGY

ATTN R HELZER

J SHRADER

T MURRAY

PO BOX 3999

SEATTLE WA 98124

BOEING CORP

ATTN T M MURRAY MS 84 84
ROBERT M SCHMIDT MS 8H 05
PO BOX 3999

SEATTLE WA 98124

BOEING HOUSTON SPACE STN
ATTN RUSSELL F GRAVES
BOX 58747

HOUSTON TX 77258

BRIGS CO

ATTN JOSEPH E BACKOFEN
2668 PETERSBOROUGH ST
HERNDON VA 22071-2443

35

NO. OF

COPIES ORGANIZATION

4

CALIFORNIA RSCH & TCHNLGY
ATTN R FANZEN

D ORPHAL

R BROWN

R FRANZEN

5117 JOHNSON DR
PLEASANTON CA 94566

CALIFORNIA RSCH & TCHNLGY
ATTN M MAJERUS

PO BOX 2229

PRINCETON NIJ 08543

CARNAHAN & ASSOC

ATTN LAURA R KISER

10101 SLATER AVE 234
FOUNTAIN VALLEY CA 92708

CAS INC

ATTIN ROBERT MCCOY
TIMOTHY A JORDAN
PO BOX 11190
HUNTSVILLE AL 35816

CDTA INC

ATTN RENE LARRIVA

9403 EAGLE TRACER
FAIRFAX STATION VA 22039

CENTURY DYNAMICS INC
ATTN NAURY BIRNBAUM
7700 EDGEWATER DR STE 626
OAKLAND CA 94621

CONCURRENT TCHNLGS CORP
ATTN ARTHUR GURSON

1450 SCALD AVE

JOHNSTOWN PA 15904-3374

CORPS OF ENGINEERS
ATTN JOHN P TIPTON
PO BOX 1600

HUNTSVILLE AL 35807

D R KENNEDY & ASSOC INC
ATTN D KENNEDY

PO BOX 4003

MOUNTAIN VIEW CA 94040




NO. OF
COPIES

ORGANIZATION

DEFNS TCHNLGY INTRNL INC
ATTN D E AYER

THE STARK HOUSE

22 CONCORD ST

NASHUA NH 03060

DESKIN RSRCH GROUP INC
ATTN EDWARD COLLINS
2270 AGNEW RD

SANTA CLARA CA 95054

DIA MSIC

ATTIN DAVID S STANFIELD
REDSTONE ASRENAL AL
35898-5500

DYNA EAST CORP

ATTN P C CHOU

R CICCARELLI

W FLIS

3620 HORIZON DR

KING OF PRUSSIA PA 19406

DYNASEN

ATTN JACQUES CHAREST
MICHAEL CHAREST
MARTIN LILLY

20 ARNOLD PL

GOLETA CA 93117

EI DUPONT DE NEMOURS & CO
ATTIN B SCOTT

L MINOR

SECURITY DIR LEGAL DEPT
PO BOX 1635

WILMINGTON DE 19899

ELORET INSTITUTE

ATTN DAVID W BOGDANOFF
MS 2302

NASA AMES RESEARCH CTR
MOFFETT FIELD CA 94035

GB TECH LOCKHEED
ATTIN JAY LAUGHMAN
2200 SPACE PARK
SUITE 400

HOUSTON TX 77258

36

NO. OF
COPIES ORGANIZATION

2 GB TECH LOCKHEED
ATTN LUCILLE BORREGO C23C
JOE FALCON JR C23C
2400 NASARD 1
HOUSTON TX 77058

1 GENERAL DYNAMICS
ATTN J H CUADROS
PO BOX 50 800
MAIL ZONE 601 87
ONTARIO CA 91761-1085

2 GENERAL RESEARCH CORP
ATTN A CHARTERS
T MENNA
PO BOX 6770
SANTA BARBARA CA
93160-6770

2 GRC INTERNATIONAL
ATTN TIMOTHY M CUNNINGHAM
WILLIAM M ISBELL
5383 HOLLISTER AVE
SANTA BARBARA CA 93111

1 HEWLETT PACKARD
ATTN FRANCIS CHARBONNIER
1700 S BAKER
MCMINNVILLE OR 97128

6 INST OF ADVANCED TCHNLGY
UNIVERSITY OF TX AUSTIN
ATTN STEPHEN J BLESS
JAMES CAZAMIAS
HARRY D FAIR
THOMAS M KIEHNE
NICK LYNCH
RAVI SUBRAMANIAN
4030-2 W BRAKER LN
AUSTIN TX 78759

2 SOUTHERN RSCH INSTITUTE
ATIN LINDSEY A DECKARD
DONALD P SEGERS
PO BOX 55305
BIRMINGHAM AL 35255-5305

1 SPACE TELESCOPE SCI INST
ATIN ROB LANDIS
3700 SAN MARTIN DR
BALTIMORE MD 21043




NO. OF

COPIES ORGANIZATION

3

INST FOR DEFNS ANALYSIS
ATIN JAMES J BAGNALL JR
STEVEN D KRAMER
KENNETH E WALL

1801 N BEAUREGARD ST
ALEXANDRIA VA 22311

JET PROPULSION LABORATORY
IMPACT PHYSICS GROUP

ATTN MARC ADAMS

4800 OAK GROVE DR
PASADENA CA 91109

JOHNS HOPKINS UNIV APL
ATIN TERRY R BETZER
ALVIN R EATON

RICHARD H KEITH

DALE K PACE

ROGER L WEST

JOHNS HOPKINS RD
LAUREL MD 20723

KAMAN SCIENCES CORP
ATTN DENNIS L JONES
2560 HUNTINGTON AVE
SUITE 200

ALEXANDRIA VA 22303

KAMAN SCIENCES
ATTN J ELDER
RICHARD P HENDERSON
DAVID A PYLES
FRANK R SAVAGE
JAMES A SUMMERS
JAMES S WILBECK
TIMOTHY W MOORE
THY YEM

600 BLVD S STE 208
HUNTSVILLE AL 35802

KAMAN SCIENCES CORP
ATTN ELLEN C DAUGHERTY
JEFFREY S ELDER

WILLIAM H JOLLY

JOBN E RUSH

600 BLVD SOUTH STE 208
HUNTSVILLE AL 35802

37

NO. OF

COPIES ORGANIZATION

3

KAMAN SCIENCES CORP
ATTN SHELDON JONES
GARY L PADEREWSKI
ROBERT G PONZINI

1500 GRDN OF THE GODS RD
COLORADO SRPING CO 80907

KAMAN SCIENCES CORP
ATTN DARREN MCKNIGHT
2560 HUNTINGTON AVE
ALEXANDRIA VA 22303

KAMAN SCIENCES CORP
ATTN NASIT ARI

STEVE R DIEHL
WILLIAM DOANE
VERNON M SMITH

PO BOX 7463
COLORADO SPRINGS CO
80933-7463

KTECH CORPORATION
ATTN FRANK W DAVIES
LARRY M LEE

901 PENNSYLVANIA NE
ALBUQUERQUE NM 87110

LIVERMORE SOFTWARE
TECHNOLOGY CORP
ATTN J O HALLQUIST
2876 WAVERLY WAY
LIVERMORE CA 94550

LOCKHEED MARTIN MIS & SPC
ATTN WILLIAM R EBERLE

PO BOX 070017

HUNTSVILLE AL 35807

LOCKHEED MIS & SPACE CO
ATTN R A HOFFMAN

SANTA CRUZ FACLLITY
EMPIRE GRADE RD

SANTA CRUZ CA 95060

LOCKHEED MIS & SPACE CO
ATIN S KUSUMI 0 81 11
BLDG 157

J PHILLIPS O 54 50

PO BOX 3504

SUNNYVALE CA 94088




NO. OF

COPIES ORGANIZATION

NO. OF
COPIES ORGANIZATION

1

LOCKHEED MARTIN MIS & SPC 1
ATTN M A LEVIN ORG 81 06

BLDG 598

111 LOCKHEED WAY

SUNNYVALE CA 94089-3504

LOCKHEED MARTIN MIS & SPC
ATTN M R MCHENRY

T ANGO

ORG 81 10 BLDG 157

111 LOCKHEED WAY
SUNNYVALE CA 94089

LOCKHEED NASA JSC
SPACE SCIENCE BRANCH
ATTN JAMES HYDE

BOX 58561 MC B22
HOUSTON TX 77258

LOCKHEED ENGRNG & SPACE

SCIENCES

ATTN E CYKOWSKI MS B22

2400 NASARD 1

HOUSTON TX 77058 7

LOCKHEED MARTIN MIS & SPC
ATIN JOHN R ANDERSON
WILLIAM C KNUDSON

PO BOX 3504

SUNNYVALE CA 94089-3504

LOGICON RDA

ATTN RAYMOND F ROSS
PO BOX 92500

LOS ANGELES CA 90009

LOGICON RDA

ATTN ROBER M DEBELL
2100 WASHINGTON BVLD
ARLINGTON VA 22204-5706

LORAL VOUGHT SYSTEMS 1
ATTN JAMES M REJCEK

ANTHONY T SKINNER

PO BOX 650003 MS SP 97

DALLAS TX 75265-0003

LTV AEROSPACE & DEFNS CO
LTV MIS & ELCTRNCS GRP
ATTN G L JACKSON WT 71

PO BOX 650003

DALLAS TX 75265-0003

38

MARTIN MARIETTA AEROSPACE
ATTIN D R BRAGG

PO BOX 5837 MP 109

ORLANDO FL 32855

MASON & HANGER

SILAS MASON CO

ATTN T ] ROWMAN

C VOGT

IOWA ARMY AMMO PLANT
MIDDLETOWN IA 52638-9701

MAXWELL LABS

S CUBED DIVISION

ATTN GERALD A GURTMAN
PO BOX 1620

LA JOLLA CA 92037

MAXWELL LABORATORY
ATTN CARL F PETERSEN
8888 BALBOA AVE

SAN DIEGO CA 92123

MEVATEC CORPORATION
ATTN KEVIN W BRUENING
STEVEN W CLARK

MARK T HARPER

E GORDON KING JR
WILLIAM K MOORE
KYLE L NASH

WILLIAM G WILK

1525 PERIMETER PKWY
SUITE 500

HUNTSVILLE AL 35806

MEVATEC CORPORATION
ATTN DOUGLAS K APO
JAY WILLIS

1700 DIAGONAL RD STE 525
ALEXANDRIA VA 22314

MIRROR ELECTRONICS
ATTN RICHARD P ESPEJO
BOX 206

GASTON OR 97119-0206

MIRROR ELECTRONICS
SCANDIFLASH

ATTN ARNE MATTSSON
JAN SUNDBERG

BOX 206

GASTON OR 97119-0206




NO. OF

COPIES ORGANIZATION

1

MISSION RSRCH CORP

ATTN THOMAS P HUGHES
1720 RANDOLPH RD SE
ALBUQUERQUE NM 87106-4245

MIT LINCOLN LAB

ARMY SCIENCE BOARD
ATTN WADE M KORNEGAY
244 WOOD ST RM S2 139
LEXINGTON MA 02173

NAC VISUAL SYSTEMS
ATTN CHRIS EDWARDS

AL FEBRARO

6307 K DESOTO AVE
WOODLAND HILLS CA 91367

NASA SPACE FLIGHT CIR
ATTN ANGELA M NOLEN
JENNIFER H ROBINSON
MARSHALL SPACE FLT CTR
HUNTSVILLE AL 35812

NASA

JOHNSON SPACE CENTER
ATTN ERIC CHRISTIANSEN
JEANNE LEE CREWS
FREDRICH HORZ

MAIL CODE SN3

2101 NASARD 1

HOUSTON TX 77058

NASA JSC

UNIVERSITY OF TEXAS
ATTN JUSTIN H KERR
GREYSTONE LN 2126
AUSTIN TX 78731

NATL MIS DEFNS PEO MD
ATIN SFAE MD NMD SE
CHARLES E DOBSON

PO BOX 1500

HUNTSVILLE AL 35807-3801

NICHOLS RSRCH CORP
ATTN WILLIAM SOMMERS
4040 S MEMORIAL PKWY
HUNTSVILLE AL 35802

39

NO. OF

COPIES ORGANIZATION

1

NMIMT EMRTC

ATTN LARRY LIBERSKY
CAMPUS STATION
SOCORRO NM 87801

NMT EMRTC

ATIN KENT L HARVEY
CAMPUS STATION
SOCORRO NM 87801

NOAA ENVRNMNTL TECH LAB
US DEPT OF COMMERCE
ATTN WYNN L EBERHARD

325 BROADWAY

BOULDER CO 80303

NORTHROP CORP

ELECTRO MECHANICAL DIV
ATIN D L HALL

T500 E ORANGETHORPE AVE
ANAHEIM CA 92801

NUCLEAR METALS INC
ATTN J SCHREIBER
2229 MAIN ST
CONCORD MA 01742

ORLANDO TECHNOLOGY INC
ATTN D MATUSKA

J OSBURN

PO BOX 855

SHALIMAR FL 32579

ORLANDO TCHNLGY INC
ATTN DANIEL A MATUSKA
PO BOX 855

SHALIMAR FL 32579

PHYSICAL SCIENCES INC
ATTN PETER NEBOLSINE

20 NEW ENGLAND BUS CTR
ANDOWER MA 01810

PHYSICOMP

ATTN PAUL J HASSIG

22440 CARENDON
WOODLAND HILLS CA 91367




NO. OF

COPIES ORGANIZATION

1

PHYSICS INTERNATIONAL CO
TACTICAL SYSTEMS GROUP
EASTERN DIVISION

PO BOX 1004

WADSWORTH OH 44281-0904

PHYSICS INTERNATIONAL
ATTN R FUNSTON

L GARNETT

G FRAZIER

PO BOX 5010

SAN LEANDRO CA 94577

PHYSICS APPLICATIONS INC
ATTN DAVID E STRANGE
7635 WILIMINGTON PIKE
DAYTON OH 45458-5413

POD ASSOC INC

ATTN ALAN J WATTS
2309 RENARD PL SE
SUITE 201
ALBUQUERQUE NM 87106

POD ASSOC INC

ATTN DALE ATKINSON
2309 RENARD PL SE
SUITE 201
ALBUQUERQUE NM 87106

POET SANDIA

ATTN ROBERT J WEIR

1745 JEFFERSON DAVIS HWY
SUITE 1100

ARLINGTON VA 22202

QUANTA METRICS
ATTN JOHN REMO

1 BRACKENWOOD PATH
ST JAMES NY 11780

RAYTHEON COMPANY
ATTN RICHARD M LLOYD
50 APPLE HILL DR

MS T3TB8

TEWSKBURY MA 01876

RAYTHEON

ATTN R MCCAUGHEY
1740 NASARD 1
HOUSTON TX 77058

40

NO. OF

COPIES ORGANIZATIO

1

ROCKWELL INTERNATIONAL
ATTN DONALD S STEVENSON
MS EBS8

PO BOX 7922

CANOGA PARK CA 91309-7922

S CUBED

ATIN R SEDGWICK

PO BOX 1620

LA JOLLA CA 92038-1620

SAIC

ATTN GREGORY J STRAUCH
MS 264

1710 GOODRIDGE DR
MCLEAN VA 22102

SAIC

ATTN MICHAEL W MCKAY
10260 CAMPUS POINT DR
SAN DIEGO CA 92121

SANTA FE PUBLIC LIBRARY
ATTN MIRIAM BOBKOFF
SANTA FE NM 87501

SCHLUMBERGER PFRTNG & TEST
ATTN M T GONZALEZ

D MARKEL

PO BOX 1590

ROSHARON TX 77583-1590

SHOCK TRANSIENTS INC
ATTN DAVID DAVISON
BOX 5357

HOPKINS MN 55343

SIMULATION & ENG CO INC
ATTN ELSA I MULLINS
STEVEN E MULLINS

8840 HWY 20 STE 200 N
MADISON AL 35758

SKY AND TELESCOPE
ATTN DON DAVIS
BELMONT MA 02178




NO. OF

COPIES ORGANIZATION

4

SRI INTERNATIONAL
ATTN DR L SEAMAN
JAMES D COLTON
MOHSEN SANAI
DONALD A SHOCKLEY
333 RAVENSWOOD AVE
MENLO PARK CA 94025

STANDARD MISSILE CO
ATTN FRANK L POWELL Il
1505 FARM CREDIT DR
MCLEAN VA 22102

STRATEGIC INSIGHT LTD
ATTN ROBERT E GRAY

1745 JEFFERSON DAVIS HWY

SUITE 511
ARLINGTON VA 22202

SUN MICOR SYS FEDERAL
ATTN JAN HAUSER

18475 CIRCLE DR

LOS GATOS CA 95030

SVERDRUP TECHNOLOGY
ATTN RAYMOND P YOUNG
LANNY P BELL

LARRY L CAMPBELL

678 SECOND ST

ARNOLD AFB TN 37389-4401

SVERDRUP TECHNOLOGY
ATTN BIZHAN AREF

214 GOVERNMENT AVE
NICEVILLE FL 32541

TEKTRONIX INC

ATTN JIM CRAIN
DOUGLAS REYNOLDS
DAVID WALLACE

6100 UPTOWN BLVD 640
ALBUQUERQUE NM 87110

TELEDYNE BROWN ENGR
ATTN JOHN C NEWQUIST
300 SPARKMAN DRIVE
HUNTSVILLE AL 35807

41

NO. OF

COPIES ORGANIZATION

3

TELEDYNE BROWN ENGR
ATTN JIM W BOOTH
MARTIN B RICHARDSON
SHERRY RIDDLE

PO BOX 070007 MS 50
HUNTSVILLE AL 35807-7007

TELEDYNE BROWN ENGR
ATTIN JOHN A HASDAL

PO BOX 070007
HUNTSVILLE AL 35807-7007

TYBRIN CORP

ATTN JERRY W JOHNSTON
1283 N EGLIN PKWY
SHALIMAR FL 32579

US GEOLOGICAL SURVEY
ATTN DAVID J RODDY
GENE SHOEMAKER

2255 N GEMINI DR
FLAGSTAFF AZ 86001

VALYN INTERNATIONAL
ATIN LYNN M BARKER
VAL BARKER

13229 CIRCULO LARGO NE
ALBUQUERQUE NM 87112

W J SCHAFER ASSOC INC
ATTN MICHAEL O BROSEE
JAMES A CHERNAULT

1901 N FT MYER DR STE 800
ARLINGTON VA 22209

WHITE SANDS TEST FACILITY

ATTN DAVID R HICKS
THOMAS PRICE

PO DRAWER MM

LAS CRUCES NM 88804

ZERNOW TECHNICAL SVCS INC

ATTN LOUIS ZERNOW
425 W BONITA AVE
SUITE 208

SAN DIMAS CA 91773




NO. OF

COPIES ORGANIZATION

46

ABERDEEN PROVING GROUND

DIR, USARL
ATTN: AMSRL-WT, I. MAY

AMSRL-WT-NC,

R. LOTTERO

S. SCHRAML
AMSRL-WT-T, W. F. MORRISON
AMSRL-WT-TA,

W. BRUCHEY

G. BULMASH

J. DEHN

G. FILBEY

M. ZOLTOSKI

W. GILLICH

W. A. GOOCH

H. W. MEYER

E. ] RAPACKI
AMSRL-WT-TB,

R. FREY

W. LAWRENCE

J. STARKENBERG
AMSRL-WT-TC,

W. S. DE ROSSET

T. W. BJERKE

R. COATES

F. GRACE

K. KIMSEY

M. LAMPSON

D. SCHEFFLER

B. SORENSEN

R. SUMMERS

W. WALTERS
AMSRL-WT-TD,

A. DIETRICH

M. RAFTENBERG

K. FRANK

J. WALTER

J. HARRISON

G. RANDERS-PEHRSON

J. SANTIAGO

M. SCHEIDLER

S. SEGLETES (3 CP)

T. WRIGHT
AMSRL-WT-PB, A. ZIELINSKI
AMSRL-WT-PD, G. GAZONAS
AMSRL-WT-WD, A. PRAKASH

42
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AMSRL-SL-BA,

R. BOWERS

A. KIWAN

E. P. WEAVER (2 CP)
AMSRL-SL-CM,

D. FARENWALD

2 DIR, USAMSAA
ATTN: K. R. FROUNFELKER
J. L. GRAHAM




NO. OF
COPIES

ORGANIZATION

DEFENSE RESEARCH ESTABLISHMENT
SUFFIELD

ATTIN C WEICKERT

D MACKAY

RALSTON, ALBERTA, TOJ 2NO RALSTON
CANADA

DEFENSE RESEARCH ESTABLISHMENT
VALCARTIER

ATTN N GASS

PO BOX 8800

COURCELETTE, PQ, GOA IRO

CANADA

CANDIAN ARSENALS LTD
ATTN P PELLETIER

5 MONTEE DES ARSENAUX
VILLIE DE GRADEUR, PQ, J5Z2
CANADA

ERNST MACH INSTITUT
ATIN A J STILP
ECKERSTRASSE 4
D-7800 FREIBURG 1. BR.
GERMANY

1ABG

ATIN H J RAATSCHEN

W SCHITTKE

F SCHARPPF

EINSTEINSTRASSE 20

D-8012 OTTOBRUN B. MUENCHEN
GERMANY

ROYAL ARMAMENT R&D ESTABLISHMENT
ATTIN I CULLIS

FT HALSTEAD

SEVENOAKS, KENT TN14 7BJ

ENGLAND

CENTRE D’ETUDES DE GRAMAT
ATTIN SOLVE GERARD
CHRISTIAN LOUPIAS

PASCALE OUTREBON

GRAMAT, 46500

FRANCE

CENTRE D’ETUDES DE VAUJOURS
ATTN PLOTARD JEAN-PAUL
BOITE POSTALE NO. 7

77181 COURTRY

FRANCE

43
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1

PRB S.A.

ATTN M VANSNICK

AVENUE DE TERVUEREN 168, BTE. 7
BRUSSELS, B-1150

BELGIUM

AB BOFORS/AMMUNITION DIV
ATTIN J HASSLID

BOX 900

5-691 80 BOFORS

SWEDEN
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